nLab
rheonomy modality
Redirected from "rheonomic modality".
Contents
Contents
Idea
In higher supergeometry the bosonic modality ( − ) ⇝ \stackrel{\rightsquigarrow}{(-)} which sends supermanifolds to their underlying ordinary bosonic smooth manifolds has a further right adjoint Rh \Rh , see at super smooth infinity-groupoid .
This means that if Fields \mathbf{Fields} is a moduli stack of fields , for instance for supergravity , then Rh ( Fields ) Rh(\mathbf{Fields}) is such that for X ^ \hat X any supermanifold with underlying manifold X → X ^ X \to \hat X , then maps
X ^ ⟶ Rh ( Fields )
\hat X \longrightarrow Rh(\mathbf{Fields})
are equivalently maps
X ⟶ Fields
X \longrightarrow \mathbf{Fields}
hence are fields configurations on the underlying ordinary manifold X X .
In the supergeometry formulation of supergravity this is what goes into the rheonomy superspace constraint which demands that on-shell super-field configurations X ^ → Fields \hat X \to \mathbf{Fields} have to be uniquely determined by their restriction along X → X ^ X \to \hat X . Therefore the space Rh ( Fields ) Rh(\mathbf{Fields}) contains the rheonomic field configurations among all the field configurations modulated by Fields \mathbf{Fields} .
See also
cohesion
infinitesimal cohesion
tangent cohesion
differential cohesion
graded differential cohesion
singular cohesion
id ⊣ id ∨ ∨ fermionic ⇉ ⊣ ⇝ bosonic ⊥ ⊥ bosonic ⇝ ⊣ R h rheonomic ∨ ∨ reduced ℜ ⊣ ℑ infinitesimal ⊥ ⊥ infinitesimal ℑ ⊣ & étale ∨ ∨ cohesive ʃ ⊣ ♭ discrete ⊥ ⊥ discrete ♭ ⊣ ♯ continuous ∨ ∨ ∅ ⊣ *
\array{
&& id &\dashv& id
\\
&& \vee && \vee
\\
&\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{}
\\
&& \bot && \bot
\\
&\stackrel{bosonic}{} & \rightsquigarrow &\dashv& \mathrm{R}\!\!\mathrm{h} & \stackrel{rheonomic}{}
\\
&& \vee && \vee
\\
&\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{}
\\
&& \bot && \bot
\\
&\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{}
\\
&& \vee && \vee
\\
&\stackrel{cohesive}{}& \esh &\dashv& \flat & \stackrel{discrete}{}
\\
&& \bot && \bot
\\
&\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{}
\\
&& \vee && \vee
\\
&& \emptyset &\dashv& \ast
}
Last revised on February 18, 2024 at 07:40:59.
See the history of this page for a list of all contributions to it.